Chapter 2 Applying Time Value Concepts


 Dwain Hill
 5 years ago
 Views:
Transcription
1 Chapter 2 Applying Time Value Concepts Chapter Overview Albert Einstein, the renowned physicist whose theories of relativity formed the theoretical base for the utilization of atomic energy, called the time value of money principle one of the strongest forces on earth. Chapter 2 discusses the importance of the time value of money. The concepts of simple and compound interest are introduced in the chapter. Simple interest refers to interest on a loan computed as a percentage of the loan amount. Compound interest refers to the process of earning interest on interest. In addition, chapter 2 also discusses the time value of money as it is applied to two types of cash flows: a single dollar amount (or lump sum) and an annuity. An annuity is a stream of equal payments paid over equal intervals of time. The use of present and future value tables and formulas to aid calculations is explained in the chapter. In addition, the chapter explains how to use a financial calculator to make time value calculations. Example calculations show the inputs required using the TI BA II Plus calculator. In discussing the future and present value of an annuity, the chapter differentiates between an ordinary annuity, for which payments occur at the end of the period, and an annuity due, for which payments occur at the beginning of the period. Annuities are illustrated through the use of timelines. As with the single dollar calculations, present and future value of an annuity tables are provided within the chapter, as are instructions for using a financial calculator. Throughout the chapter, practical uses for each type of calculation are described. The chapter concludes with a discussion on how to convert a nominal interest rate to an effective interest rate and vice versa. The nominal interest rate is the stated, or quoted, rate of interest. It is the rate of interest that is used in time value of money calculations. The effective interest rate is the actual rate of interest that you earn, or pay, over a period of time. Effective interest rates can be compared with each other; whereas nominal interest rates cannot be directly compared in situations where the compounding period between interest rates is different. Chapter Objectives The objectives of this chapter are to: calculate the future value of a dollar amount that you save today, calculate the present value of a dollar amount that will be received in the future, calculate the future value of an annuity, and calculate the present value of an annuity.
2 Chapter 2 Applying Time Value Concepts 211 Teaching Tips 1. The classic example of the power of compound interest is to ask students whether they would rather have $500,000 right now or one cent that you would double each day for the next thirty days. Many students will choose the $500,000 at first. However, the one cent would grow to $10,737, at the end of thirty days. While this represents a 100% daily interest rate which cannot be obtained, it is a powerful example. This chapter concerns the time value of money and it is a good idea to emphasize time over deposit amounts or rates of return. Have the students calculate, either using the tables or with a financial calculator, a single sum at a given interest rate, changing only the length of time of the investment. For instance, a onetime $5,000 investment at 10% compounded annually would return $87,247 after 30 years, but only $54,174 after 25 years. Only 5 years difference in time amounts to a difference of $33,073, or an average loss of $6,614 per year. After 20 years the investment would return only $33, 637, and after 10 years it would return only $12,969. Emphasize that all of this is based on the initial amount of $5,000 with no additional investment by the investor. 2. It is sometimes said that those who understand compound interest collect it while those who don t understand it pay it. Discuss the fact that while compound interest works to our advantage when we save and invest, it works to our detriment when we are in debt. Suppose you bought a $2,000 home entertainment system on a credit card that charges19.99% annual interest, compounded daily. Using minimum payments of 3% of the outstanding balance for each month, it will take 15 years and 3 months to pay off the debt. You would have paid $2, in interest, making the total payments $4,238.13, the true cost of the entertainment system when purchased on credit. The moral of this example is to never pay minimum payments on high interest credit cards. Paying $60 a month would pay off the same debt in 4 years and 2 months, and reduce the interest paid to $ Paying $100 a month would pay the debt off in 2 years 1 month, and would cost only $ in interest. Make the calculations before making the purchase to ensure that you can make payments that will minimize the amount of interest you will pay. Note to instructor: Calculations for this teaching tip were made using Credit Canada s debt calculator available at 3. Demonstrate the difference between simple and compound interest. If you deposit $2,000 per year for 40 years and earn 10% compounded annually, but withdraw the interest and spend it, the $2,000 deposit annually would be worth $80,000 in 40 years. By allowing the interest to compound with the deposits, the investment would be worth $885, Online/Team exercise review of TVM problems. Generally, students will have a variety of backgrounds on this topic. The use of a team exercise gives those with some expertise a chance to help those with little or no background. It is a good review for those with the expertise and makes the others more comfortable with peer help. Answers to EndofChapter Review Questions 1. The time value of money is a powerful principle that can be used to explain how money grows over time. When you spend money, you incur an opportunity cost of what you could have done with that money had you not spent it. For example, if you spent $2000 on a vacation rather than saving it, you would have incurred an opportunity cost of the alternative ways that you could have used the money. You can use the time value of money to compute the actual cost of the opportunity. 2. Interest is the rent charged for the use of money. Depending on whether you have borrowed or loaned money, you will either pay or receive interest, respectively. Simple interest is interest on a
3 212 Chapter 2 Applying Time Value Concepts loan computed as a percentage of the loan amount, or principal. The interest earned or paid is not reinvested. Simple interest is measured by multiplying the principal, the interest rate applied to the principal, and the loan s time to maturity (in years). Compound interest refers to the process of earning interest on interest. 3. For simple problems a time value of money table may be used to calculate the future or present value of a single dollar amount. Other methods that may be used to solve time value of money problems include time value of money formulas and financial calculators. 4. The time value of money is most commonly applied to two types of cash flows: a single dollar amount (also referred to as a lump sum) and an annuity. An annuity refers to the payment of a series of equal cash flow payments at equal intervals of time. 5. The inputs required when calculating the future value, FV, of a single dollar amount using a formula are the present future value of an investment (PV), the annual interest rate, i, (expressed as a decimal), the number of compounding periods per year (n), and time, t, (in years). 6. The future value interest factor (FVIF), is a factor multiplied by today s savings to determine how the savings will accumulate over time. The factor is determined based on an annual interest rate where the number of compounding periods is one. The formula for determining the future value of a single dollar amount when using the future value interest factor is: FV = PV FVIF i,n In order to find the correct future value interest factor, you must know the interest rate and the number of years the money is invested. 7. Clear the existing TVM values in the calculator s TVM worksheet by entering 2ND CLR TVM. 8. A cash inflow (for example, income received from an investment) should be entered as a positive number. A cash outflow (for example, an investment amount) should be entered as a negative number. The +/ key on the TI BA II Plus is used to convert a positive number to a negative number, and vice versa. 9. There are 12 compounding periods in a year when an investment compounds interest monthly. An investment that compounds interest quarterly has 4 compounding periods. An investment that compounds interest daily has 365 compounding periods. 10. Discounting is the process of obtaining present values. 11. Suppose you need $ to purchase a car in 3 years. You may want to determine how much money you need to invest today to achieve the $ in three years. Another instance where determining the present value is useful would be if you want to pay off a loan today that will, for example, be paid over 3 years. In this case, you want to know the present value of these future payments. 12. The formula for the present value of a single dollar amount is:
4 Chapter 2 Applying Time Value Concepts The present value interest factor is a factor multiplied by the future value to determine the present value of that amount. The formula for determining the present value of a single dollar amount when using the present value interest factor is: PV = FV PVIF i,n 14. An annuity refers to the payment of a series of equal cash flow payments at equal intervals of time. An ordinary annuity is a stream of equal payments that are received or paid at equal intervals in time at the end of a period. An annuity due is a series of equal cash flow payments that occur at the beginning of each period. Thus, an annuity due differs from an ordinary annuity in that the payments occur at the beginning instead of the end of the period. The most important thing to note about an annuity is that if the payment changes over time, the payment stream does not reflect an annuity. 15. The formula used to determine the future value of an annuity is: 16. The future value interest factor for an annuity, FVIFA, is a factor multiplied by the periodic savings level (annuity) to determine how the savings will accumulate over time. The formula for the future value interest factor for an annuity, when using a table, is: FVA = PMT FVIFA i,n 17. An annuity formula or table will provide the future value for an ordinary annuity. In order to adjust your calculation for an annuity due, you would multiply the annuity payment generated by multiplying the value from the table by (1 + i). 18. The formula used to determine the present value of an annuity is: 19. The present value interest factor for an annuity, PVIFA, is a factor multiplied by a periodic savings level (annuity) to determine the present value of the annuity. The formula for the present value interest factor for an annuity, when using a table, is: PVA = PMT PVIFA i,n The nominal interest rate is the stated, or quoted, rate of interest. It is also known as the annual percentage rate (APR). The effective interest rate is the actual rate of interest that you earn, or pay, over a period of time. It is also known as the effective yield (EY). When comparing two or more interest rates, the nominal interest rate is not useful because it does not take into account the effect of compounding. In order to make objective investment decisions regarding loan costs or investment returns over different compounding frequencies, the effective interest rate has to be determined. The effective interest rate allows for the comparison of two or more interest rates because it reflects the effect of compound interest.
5 214 Chapter 2 Applying Time Value Concepts 22. The present value of a single sum 23. The future value of an annuity 24. The future value of a single sum 25. The present value of an annuity Answers to Financial Planning Problems 1. P/Y = 1, C/Y = 1, N = 5, I/Y = 4, PV = 1000, PMT = 0, FV =? Rodney will have $1, in five years to put down on his car. 2. P/Y = 12, C/Y = 1, N = 60, I/Y = 3, PV = 0, PMT = 50, FV =? Michelle s balance in five years will be $3, Jessica: P/Y = 1, C/Y = 1, N = 10, I/Y = 10, PV = 0, PMT = 2000, FV =? Jessica will have $31, after 10 years. Jessica: P/Y = 1, C/Y = 1, N = 30, I/Y = 10, PV = , PMT = 0, FV =? Jessica will have $556, at retirement. She contributed $20,000 in total. Joshua: P/Y = 1, C/Y = 1, N = 30, I/Y = 10, PV = 0, PMT = 2000, FV =? Joshua will have $328, at retirement. He contributed $60,000 in total. 4. P/Y = 1, C/Y = 12, N = 3, I/Y = 4, PV =?, PMT = 0, FV = 2000 Cheryl must deposit $1, now in order to have the money she needs in three years. 5. P/Y = 12, C/Y = 2, N = 4, I/Y = 8, PV = 0, PMT =?, FV = 7000 Amy and Vince must save $ each month to have the money they need. 6. P/Y = 12, C/Y = 1, N = 300, I/Y = 12, PV = 0, PMT = 400, FV =? Judith s employer contributes $200 per month. She will have $674, in her retirement plan at retirement 7. P/Y = 12, C/Y = 4, N = 360, I/Y = 11, PV = 0, PMT = 300, FV =? Stacey will not reach her retirement goal since she will only be able to accumulate $823, by the time she retires in 30 years.
6 Chapter 2 Applying Time Value Concepts P/Y = 1, C/Y = 1, N = 18, I/Y = 7, PV =?, PMT = 0, FV = Juan must deposit $2, now in order to achieve his goal. 9. P/Y = 1, C/Y = 12, N = 20, I/Y = 4, PV = 0, PMT = 100, FV =? $3, will be in the account in 20 years. 10. P/Y = 1, C/Y = 4, N = 3, I/Y = 9, PV = 3000, PMT = 0, FV =? Earl will have $3, to spend on his trip to Belize. 11. Lumpsum payment: P/Y = 1, C/Y = 12, N = 20, I/Y = 8, PV = , PMT = 0, FV =? The lumpsum payment will be worth $1,541, after 20 years. Annual payment: P/Y = 1, C/Y = 1, N = 20, I/Y = 6, PV = 0, PMT = 50000, FV =? The annual payment will be worth $1,839, after 20 years. Jesse should choose the annual payment. 12. P/Y = 1, C/Y = 4, N = 20, I/Y = 7, PV =?, PMT = 0, FV = The cash option payout would be $1,497, P/Y = 52, C/Y = 12, N = 260, I/Y = 10, PV = 0, PMT = 10, FV =? She will have $3, in five years. 14. Invest It: P/Y = 1, C/Y = 4, N = 3, I/Y = 5, PV = 1000, PMT = 0, FV =? Investing the income tax refund will give him $1, at the end of three years. Purchase Stereo: P/Y = 12, C/Y = 365, N = 36, I/Y = 4, PV = 0, PMT = 30, FV =? Purchasing the stereo and investing $30 per month will give him $1, at the end of three years. 15. P/Y = 12, C/Y = 52, N = 36, I/Y = 10, PV = 0, PMT = 75, FV =? You will have $3, The equivalent effective interest rate is 8.71%.
7 216 Chapter 2 Applying Time Value Concepts Suggested answers to Ethical Dilemma questions (a) This question will hopefully spark a lively discussion between those students who believe that a salesperson s first obligation is to sell products or services and those students who believe that a salesperson s first obligation is to assist the customer. (b) Two hundred dollars per month at 6 percent compounded annually will grow to $194, in 30 years. Two hundred and forty dollars per month at 6 percent compounded annually will grow to $162, in 25 years. Therefore, Herb is incorrect in his calculation. Answers to Questions in The Sampson Family: A Continuing Case 1. Savings Accumulated Over the Next 12 Years (Based on Plan to Save $300 per month) Amount Saved Per Month $300 $300 Interest Rate 5% 7% Years Future Value of Savings $59,029 $67,408 Savings Accumulated Over the Next 12 Years (Based on Plan to Save $400 per month) Amount Saved Per Year $400 $400 Interest Rate 5% 7% Years Future Value of Savings $78,705 $89, If the Sampsons save $300 per month, the higher interest rate would result in an extra accumulation in savings of more than $8,000. If they save $400 per month, the higher interest rate would result in an extra accumulation in savings of more than $11,000 per year. 3. Using a 5% interest rate, saving $400 per month instead of $300 would increase their total savings by more than $19,000. Using a 7% interest rate, saving $400 per month instead of $300 would increase their total savings by more than $22, To achieve a goal of $70,000 over 12 years, they would need to save an annual amount (annuity) as determined below: P/Y = 1, C/Y = 12, N = 12, I/Y = 5, PV = 0, PMT =?, FV = Thus, they would have to invest $4,368 by the end of each year to accumulate $70,000 in twelve years.
8 Chapter 2 Applying Time Value Concepts 217 Answers to Myth or Fact Margin Questions Page Myth or Fact 23 The interest rate that you are quoted on an investment or loan represents the amount of interest that you will earn or pay. Myth. The interest rate quoted, i.e. the nominal rate of interest, may not be the same as the interest earned or paid, i.e. the effective or real rate of interest. It is important to know the number of compounding periods associated with a loan or investment. 31 All financial calculators calculate the time value of money in the same manner. Myth. Financial calculators produced by different manufacturers will involve different steps when performing a time value of money calculation. 33 Future value interest factors (FVIF) and a financial calculator will generate different answers to a question. Fact. Due to rounding error, each method will provide a slightly different answer.
Applying Time Value Concepts
Applying Time Value Concepts C H A P T E R 3 based on the value of two packs of cigarettes per day and a modest rate of return? Let s assume that Lou will save an amount equivalent to the cost of two packs
More informationMain TVM functions of a BAII Plus Financial Calculator
Main TVM functions of a BAII Plus Financial Calculator The BAII Plus calculator can be used to perform calculations for problems involving compound interest and different types of annuities. (Note: there
More informationTime Value of Money Problems
Time Value of Money Problems 1. What will a deposit of $4,500 at 10% compounded semiannually be worth if left in the bank for six years? a. $8,020.22 b. $7,959.55 c. $8,081.55 d. $8,181.55 2. What will
More informationDISCOUNTED CASH FLOW VALUATION and MULTIPLE CASH FLOWS
Chapter 5 DISCOUNTED CASH FLOW VALUATION and MULTIPLE CASH FLOWS The basic PV and FV techniques can be extended to handle any number of cash flows. PV with multiple cash flows: Suppose you need $500 one
More informationThe Time Value of Money
The Time Value of Money Time Value Terminology 0 1 2 3 4 PV FV Future value (FV) is the amount an investment is worth after one or more periods. Present value (PV) is the current value of one or more future
More informationChapter 6. Discounted Cash Flow Valuation. Key Concepts and Skills. Multiple Cash Flows Future Value Example 6.1. Answer 6.1
Chapter 6 Key Concepts and Skills Be able to compute: the future value of multiple cash flows the present value of multiple cash flows the future and present value of annuities Discounted Cash Flow Valuation
More informationPRESENT VALUE ANALYSIS. Time value of money equal dollar amounts have different values at different points in time.
PRESENT VALUE ANALYSIS Time value of money equal dollar amounts have different values at different points in time. Present value analysis tool to convert CFs at different points in time to comparable values
More informationFuture Value. Basic TVM Concepts. Chapter 2 Time Value of Money. $500 cash flow. On a time line for 3 years: $100. FV 15%, 10 yr.
Chapter Time Value of Money Future Value Present Value Annuities Effective Annual Rate Uneven Cash Flows Growing Annuities Loan Amortization Summary and Conclusions Basic TVM Concepts Interest rate: abbreviated
More informationReal estate investment & Appraisal Dr. Ahmed Y. Dashti. Sample Exam Questions
Real estate investment & Appraisal Dr. Ahmed Y. Dashti Sample Exam Questions Problem 31 a) Future Value = $12,000 (FVIF, 9%, 7 years) = $12,000 (1.82804) = $21,936 (annual compounding) b) Future Value
More informationTIME VALUE OF MONEY. In following we will introduce one of the most important and powerful concepts you will learn in your study of finance;
In following we will introduce one of the most important and powerful concepts you will learn in your study of finance; the time value of money. It is generally acknowledged that money has a time value.
More informationChapter 7 SOLUTIONS TO ENDOFCHAPTER PROBLEMS
Chapter 7 SOLUTIONS TO ENDOFCHAPTER PROBLEMS 71 0 1 2 3 4 5 10% PV 10,000 FV 5? FV 5 $10,000(1.10) 5 $10,000(FVIF 10%, 5 ) $10,000(1.6105) $16,105. Alternatively, with a financial calculator enter the
More informationTIME VALUE OF MONEY (TVM)
TIME VALUE OF MONEY (TVM) INTEREST Rate of Return When we know the Present Value (amount today), Future Value (amount to which the investment will grow), and Number of Periods, we can calculate the rate
More informationChapter 3. Understanding The Time Value of Money. PrenticeHall, Inc. 1
Chapter 3 Understanding The Time Value of Money PrenticeHall, Inc. 1 Time Value of Money A dollar received today is worth more than a dollar received in the future. The sooner your money can earn interest,
More informationTIME VALUE OF MONEY PROBLEM #4: PRESENT VALUE OF AN ANNUITY
TIME VALUE OF MONEY PROBLEM #4: PRESENT VALUE OF AN ANNUITY Professor Peter Harris Mathematics by Dr. Sharon Petrushka Introduction In this assignment we will discuss how to calculate the Present Value
More informationIn this section, the functions of a financial calculator will be reviewed and some sample problems will be demonstrated.
Section 4: Using a Financial Calculator Tab 1: Introduction and Objectives Introduction In this section, the functions of a financial calculator will be reviewed and some sample problems will be demonstrated.
More informationChapter 4. Time Value of Money. Copyright 2009 Pearson Prentice Hall. All rights reserved.
Chapter 4 Time Value of Money Learning Goals 1. Discuss the role of time value in finance, the use of computational aids, and the basic patterns of cash flow. 2. Understand the concept of future value
More informationChapter 4. Time Value of Money. Learning Goals. Learning Goals (cont.)
Chapter 4 Time Value of Money Learning Goals 1. Discuss the role of time value in finance, the use of computational aids, and the basic patterns of cash flow. 2. Understand the concept of future value
More informationKey Concepts and Skills. Multiple Cash Flows Future Value Example 6.1. Chapter Outline. Multiple Cash Flows Example 2 Continued
6 Calculators Discounted Cash Flow Valuation Key Concepts and Skills Be able to compute the future value of multiple cash flows Be able to compute the present value of multiple cash flows Be able to compute
More informationHow To Read The Book \"Financial Planning\"
Time Value of Money Reading 5 IFT Notes for the 2015 Level 1 CFA exam Contents 1. Introduction... 2 2. Interest Rates: Interpretation... 2 3. The Future Value of a Single Cash Flow... 4 4. The Future Value
More informationSolutions to Problems: Chapter 5
Solutions to Problems: Chapter 5 P51. Using a time line LG 1; Basic a, b, and c d. Financial managers rely more on present value than future value because they typically make decisions before the start
More informationChapter 4. The Time Value of Money
Chapter 4 The Time Value of Money 42 Topics Covered Future Values and Compound Interest Present Values Multiple Cash Flows Perpetuities and Annuities Inflation and Time Value Effective Annual Interest
More informationDiscounted Cash Flow Valuation
6 Formulas Discounted Cash Flow Valuation McGrawHill/Irwin Copyright 2008 by The McGrawHill Companies, Inc. All rights reserved. Chapter Outline Future and Present Values of Multiple Cash Flows Valuing
More informationSolutions to Problems
Solutions to Problems P41. LG 1: Using a time line Basic a. b. and c. d. Financial managers rely more on present value than future value because they typically make decisions before the start of a project,
More informationTHE TIME VALUE OF MONEY
QUANTITATIVE METHODS THE TIME VALUE OF MONEY Reading 5 http://proschool.imsindia.com/ 1 Learning Objective Statements (LOS) a. Interest Rates as Required rate of return, Discount Rate and Opportunity Cost
More information1. If you wish to accumulate $140,000 in 13 years, how much must you deposit today in an account that pays an annual interest rate of 14%?
Chapter 2  Sample Problems 1. If you wish to accumulate $140,000 in 13 years, how much must you deposit today in an account that pays an annual interest rate of 14%? 2. What will $247,000 grow to be in
More informationWeek 4. Chonga Zangpo, DFB
Week 4 Time Value of Money Chonga Zangpo, DFB What is time value of money? It is based on the belief that people have a positive time preference for consumption. It reflects the notion that people prefer
More informationTHE VALUE OF MONEY PROBLEM #3: ANNUITY. Professor Peter Harris Mathematics by Dr. Sharon Petrushka. Introduction
THE VALUE OF MONEY PROBLEM #3: ANNUITY Professor Peter Harris Mathematics by Dr. Sharon Petrushka Introduction Earlier, we explained how to calculate the future value of a single sum placed on deposit
More informationfirst complete "prior knowlegde"  to refresh knowledge of Simple and Compound Interest.
ORDINARY SIMPLE ANNUITIES first complete "prior knowlegde"  to refresh knowledge of Simple and Compound Interest. LESSON OBJECTIVES: students will learn how to determine the Accumulated Value of Regular
More informationSection 5.1  Compound Interest
Section 5.1  Compound Interest Simple Interest Formulas If I denotes the interest on a principal P (in dollars) at an interest rate of r (as a decimal) per year for t years, then we have: Interest: Accumulated
More informationChapter 4 Time Value of Money ANSWERS TO ENDOFCHAPTER QUESTIONS
Chapter 4 Time Value of Money ANSWERS TO ENDOFCHAPTER QUESTIONS 41 a. PV (present value) is the value today of a future payment, or stream of payments, discounted at the appropriate rate of interest.
More informationChris Leung, Ph.D., CFA, FRM
FNE 215 Financial Planning Chris Leung, Ph.D., CFA, FRM Email: chleung@chuhai.edu.hk Chapter 2 Planning with Personal Financial Statements Chapter Objectives Explain how to create your personal cash flow
More informationTime Value of Money. 2014 Level I Quantitative Methods. IFT Notes for the CFA exam
Time Value of Money 2014 Level I Quantitative Methods IFT Notes for the CFA exam Contents 1. Introduction... 2 2. Interest Rates: Interpretation... 2 3. The Future Value of a Single Cash Flow... 4 4. The
More informationThe Time Value of Money
The following is a review of the Quantitative Methods: Basic Concepts principles designed to address the learning outcome statements set forth by CFA Institute. This topic is also covered in: The Time
More informationChapter 6. Learning Objectives Principles Used in This Chapter 1. Annuities 2. Perpetuities 3. Complex Cash Flow Streams
Chapter 6 Learning Objectives Principles Used in This Chapter 1. Annuities 2. Perpetuities 3. Complex Cash Flow Streams 1. Distinguish between an ordinary annuity and an annuity due, and calculate present
More informationImportant Financial Concepts
Part 2 Important Financial Concepts Chapter 4 Time Value of Money Chapter 5 Risk and Return Chapter 6 Interest Rates and Bond Valuation Chapter 7 Stock Valuation 130 LG1 LG2 LG3 LG4 LG5 LG6 Chapter 4 Time
More informationModule 5: Interest concepts of future and present value
file:///f /Courses/201011/CGA/FA2/06course/m05intro.htm Module 5: Interest concepts of future and present value Overview In this module, you learn about the fundamental concepts of interest and present
More informationKey Concepts and Skills
McGrawHill/Irwin Copyright 2014 by the McGrawHill Companies, Inc. All rights reserved. Key Concepts and Skills Be able to compute: The future value of an investment made today The present value of cash
More informationThe Time Value of Money
C H A P T E R6 The Time Value of Money When plumbers or carpenters tackle a job, they begin by opening their toolboxes, which hold a variety of specialized tools to help them perform their jobs. The financial
More informationTimeValueofMoney and Amortization Worksheets
2 TimeValueofMoney and Amortization Worksheets The TimeValueofMoney and Amortization worksheets are useful in applications where the cash flows are equal, evenly spaced, and either all inflows or
More informationThe Interest Rate: A loan, expressed as a percentage of the amount loaned per year.
Interest Rates Time Value of Money The Interest Rate Simple Interest Amortizing a Loan The Interest Rate: A loan, expressed as a percentage of the amount loaned per year. Interest rate is the "price" of
More informationDiscounted Cash Flow Valuation
BUAD 100x Foundations of Finance Discounted Cash Flow Valuation September 28, 2009 Review Introduction to corporate finance What is corporate finance? What is a corporation? What decision do managers make?
More informationTime Value of Money. 15.511 Corporate Accounting Summer 2004. Professor S. P. Kothari Sloan School of Management Massachusetts Institute of Technology
Time Value of Money 15.511 Corporate Accounting Summer 2004 Professor S. P. Kothari Sloan School of Management Massachusetts Institute of Technology July 2, 2004 1 LIABILITIES: Current Liabilities Obligations
More informationOklahoma State University Spears School of Business. Time Value of Money
Oklahoma State University Spears School of Business Time Value of Money Slide 2 Time Value of Money Which would you rather receive as a signin bonus for your new job? 1. $15,000 cash upon signing the
More informationChapter 6 Contents. Principles Used in Chapter 6 Principle 1: Money Has a Time Value.
Chapter 6 The Time Value of Money: Annuities and Other Topics Chapter 6 Contents Learning Objectives 1. Distinguish between an ordinary annuity and an annuity due, and calculate present and future values
More informationMAT116 Project 2 Chapters 8 & 9
MAT116 Project 2 Chapters 8 & 9 1 81: The Project In Project 1 we made a loan workout decision based only on data from three banks that had merged into one. We did not consider issues like: What was the
More informationCHAPTER 2. Time Value of Money 21
CHAPTER 2 Time Value of Money 21 Time Value of Money (TVM) Time Lines Future value & Present value Rates of return Annuities & Perpetuities Uneven cash Flow Streams Amortization 22 Time lines 0 1 2 3
More informationFinQuiz Notes 2 0 1 4
Reading 5 The Time Value of Money Money has a time value because a unit of money received today is worth more than a unit of money to be received tomorrow. Interest rates can be interpreted in three ways.
More informationTime Value of Money. 2014 Level I Quantitative Methods. IFT Notes for the CFA exam
Time Value of Money 2014 Level I Quantitative Methods IFT Notes for the CFA exam Contents 1. Introduction...2 2. Interest Rates: Interpretation...2 3. The Future Value of a Single Cash Flow...4 4. The
More informationThe explanations below will make it easier for you to use the calculator. The ON/OFF key is used to turn the calculator on and off.
USER GUIDE Texas Instrument BA II Plus Calculator April 2007 GENERAL INFORMATION The Texas Instrument BA II Plus financial calculator was designed to support the many possible applications in the areas
More informationChapter The Time Value of Money
Chapter The Time Value of Money PPT 92 Chapter 9  Outline Time Value of Money Future Value and Present Value Annuities TimeValueofMoney Formulas Adjusting for NonAnnual Compounding Compound Interest
More informationChapter F: Finance. Section F.1F.4
Chapter F: Finance Section F.1F.4 F.1 Simple Interest Suppose a sum of money P, called the principal or present value, is invested for t years at an annual simple interest rate of r, where r is given
More informationThe values in the TVM Solver are quantities involved in compound interest and annuities.
Texas Instruments Graphing Calculators have a built in app that may be used to compute quantities involved in compound interest, annuities, and amortization. For the examples below, we ll utilize the screens
More informationChapter 4. Time Value of Money
Chapter 4 Time Value of Money Learning Goals 1. Discuss the role of time value in finance, the use of computational aids, and the basic patterns of cash flow. 2. Understand the concept of future value
More informationIng. Tomáš Rábek, PhD Department of finance
Ing. Tomáš Rábek, PhD Department of finance For financial managers to have a clear understanding of the time value of money and its impact on stock prices. These concepts are discussed in this lesson,
More informationANNUITIES. Ordinary Simple Annuities
An annuity is a series of payments or withdrawals. ANNUITIES An Annuity can be either Simple or General Simple Annuities  Compounding periods and payment periods coincide. General Annuities  Compounding
More informationOrdinary Annuities Chapter 10
Ordinary Annuities Chapter 10 Learning Objectives After completing this chapter, you will be able to: > Define and distinguish between ordinary simple annuities and ordinary general annuities. > Calculate
More informationPowerPoint. to accompany. Chapter 5. Interest Rates
PowerPoint to accompany Chapter 5 Interest Rates 5.1 Interest Rate Quotes and Adjustments To understand interest rates, it s important to think of interest rates as a price the price of using money. When
More informationModule 5: Interest concepts of future and present value
Page 1 of 23 Module 5: Interest concepts of future and present value Overview In this module, you learn about the fundamental concepts of interest and present and future values, as well as ordinary annuities
More informationProblem Set: Annuities and Perpetuities (Solutions Below)
Problem Set: Annuities and Perpetuities (Solutions Below) 1. If you plan to save $300 annually for 10 years and the discount rate is 15%, what is the future value? 2. If you want to buy a boat in 6 years
More informationFinancial Management
Just Published! 206 Financial Management Principles & Practice 7e By Timothy Gallagher Colorado State University Changes to the new Seventh Edition: Updating of all time sensitive material and some new
More informationCHAPTER 4 DISCOUNTED CASH FLOW VALUATION
CHAPTER 4 DISCOUNTED CASH FLOW VALUATION Solutions to Questions and Problems NOTE: Allendof chapter problems were solved using a spreadsheet. Many problems require multiple steps. Due to space and readability
More informationReview Page 468 #1,3,5,7,9,10
MAP4C Financial Student Checklist Topic/Goal Task Prerequisite Skills Simple & Compound Interest Video Lesson Part Video Lesson Part Worksheet (pages) Present Value Goal: I will use the present value formula
More informationPresent Value Concepts
Present Value Concepts Present value concepts are widely used by accountants in the preparation of financial statements. In fact, under International Financial Reporting Standards (IFRS), these concepts
More information1. Annuity a sequence of payments, each made at equally spaced time intervals.
Ordinary Annuities (Young: 6.2) In this Lecture: 1. More Terminology 2. Future Value of an Ordinary Annuity 3. The Ordinary Annuity Formula (Optional) 4. Present Value of an Ordinary Annuity More Terminology
More informationTime Value of Money PAPER 3A: COST ACCOUNTING CHAPTER 2 BY: CA KAPILESHWAR BHALLA
Time Value of Money 1 PAPER 3A: COST ACCOUNTING CHAPTER 2 BY: CA KAPILESHWAR BHALLA Learning objectives 2 Understand the Concept of time value of money. Understand the relationship between present and
More information2016 Wiley. Study Session 2: Quantitative Methods Basic Concepts
2016 Wiley Study Session 2: Quantitative Methods Basic Concepts Reading 5: The Time Value of Money LESSO 1: ITRODUCTIO, ITEREST RATES, FUTURE VALUE, AD PREST VALUE The Financial Calculator It is very important
More information5. Time value of money
1 Simple interest 2 5. Time value of money With simple interest, the amount earned each period is always the same: i = rp o We will review some tools for discounting cash flows. where i = interest earned
More informationRegular Annuities: Determining Present Value
8.6 Regular Annuities: Determining Present Value GOAL Find the present value when payments or deposits are made at regular intervals. LEARN ABOUT the Math Harry has money in an account that pays 9%/a compounded
More informationTime Value of Money. If you deposit $100 in an account that pays 6% annual interest, what amount will you expect to have in
Time Value of Money Future value Present value Rates of return 1 If you deposit $100 in an account that pays 6% annual interest, what amount will you expect to have in the account at the end of the year.
More informationTopics. Chapter 5. Future Value. Future Value  Compounding. Time Value of Money. 0 r = 5% 1
Chapter 5 Time Value of Money Topics 1. Future Value of a Lump Sum 2. Present Value of a Lump Sum 3. Future Value of Cash Flow Streams 4. Present Value of Cash Flow Streams 5. Perpetuities 6. Uneven Series
More informationCompounding Assumptions. Compounding Assumptions. Financial Calculations on the Texas Instruments BAII Plus. Compounding Assumptions.
Compounding Assumptions Financial Calculations on the Texas Instruments BAII Plus This is a first draft, and may contain errors. Feedback is appreciated The TI BAII Plus has builtin preset assumptions
More informationUsing the Finance Menu of the TI83/84/Plus calculators KEY
Using the Finance Menu of the TI83/84/Plus calculators KEY To get to the FINANCE menu On the TI83 press 2 nd x 1 On the TI83, TI83 Plus, TI84, or TI84 Plus press APPS and then select 1:FINANCE The
More informationChapter 4: Time Value of Money
FIN 301 Homework Solution Ch4 Chapter 4: Time Value of Money 1. a. 10,000/(1.10) 10 = 3,855.43 b. 10,000/(1.10) 20 = 1,486.44 c. 10,000/(1.05) 10 = 6,139.13 d. 10,000/(1.05) 20 = 3,768.89 2. a. $100 (1.10)
More informationUSING THE SHARP EL 738 FINANCIAL CALCULATOR
USING THE SHARP EL 738 FINANCIAL CALCULATOR Basic financial examples with financial calculator steps Prepared by Colin C Smith 2010 Some important things to consider 1. These notes cover basic financial
More informationIntegrated Case. 542 First National Bank Time Value of Money Analysis
Integrated Case 542 First National Bank Time Value of Money Analysis You have applied for a job with a local bank. As part of its evaluation process, you must take an examination on time value of money
More information2. How would (a) a decrease in the interest rate or (b) an increase in the holding period of a deposit affect its future value? Why?
CHAPTER 3 CONCEPT REVIEW QUESTIONS 1. Will a deposit made into an account paying compound interest (assuming compounding occurs once per year) yield a higher future value after one period than an equalsized
More informationSample problems from Chapter 10.1
Sample problems from Chapter 10.1 This is the annuities sinking funds formula. This formula is used in most cases for annuities. The payments for this formula are made at the end of a period. Your book
More informationTexas Instruments BAII Plus Tutorial for Use with Fundamentals 11/e and Concise 5/e
Texas Instruments BAII Plus Tutorial for Use with Fundamentals 11/e and Concise 5/e This tutorial was developed for use with Brigham and Houston s Fundamentals of Financial Management, 11/e and Concise,
More informationCHAPTER 5 INTRODUCTION TO VALUATION: THE TIME VALUE OF MONEY
CHAPTER 5 INTRODUCTION TO VALUATION: THE TIME VALUE OF MONEY 1. The simple interest per year is: $5,000.08 = $400 So after 10 years you will have: $400 10 = $4,000 in interest. The total balance will be
More informationChapter 6. Time Value of Money Concepts. Simple Interest 61. Interest amount = P i n. Assume you invest $1,000 at 6% simple interest for 3 years.
61 Chapter 6 Time Value of Money Concepts 62 Time Value of Money Interest is the rent paid for the use of money over time. That s right! A dollar today is more valuable than a dollar to be received in
More informationFinQuiz Notes 2 0 1 5
Reading 5 The Time Value of Money Money has a time value because a unit of money received today is worth more than a unit of money to be received tomorrow. Interest rates can be interpreted in three ways.
More informationIntroduction. Turning the Calculator On and Off
Texas Instruments BAII PLUS Calculator Tutorial to accompany Cyr, et. al. Contemporary Financial Management, 1 st Canadian Edition, 2004 Version #6, May 5, 2004 By William F. Rentz and Alfred L. Kahl Introduction
More informationContinue this process until you have cleared the stored memory positions that you wish to clear individually and keep those that you do not.
Texas Instruments (TI) BA II PLUS Professional The TI BA II PLUS Professional functions similarly to the TI BA II PLUS model. Any exceptions are noted here. The TI BA II PLUS Professional can perform two
More informationTIME VALUE OF MONEY. Return of vs. Return on Investment: We EXPECT to get more than we invest!
TIME VALUE OF MONEY Return of vs. Return on Investment: We EXPECT to get more than we invest! Invest $1,000 it becomes $1,050 $1,000 return of $50 return on Factors to consider when assessing Return on
More informationCorporate Finance Fundamentals [FN1]
Page 1 of 32 Foundation review Introduction Throughout FN1, you encounter important techniques and concepts that you learned in previous courses in the CGA program of professional studies. The purpose
More informationSolutions to Time value of money practice problems
Solutions to Time value of money practice problems Prepared by Pamela Peterson Drake 1. What is the balance in an account at the end of 10 years if $2,500 is deposited today and the account earns 4% interest,
More informationCHAPTER 4 DISCOUNTED CASH FLOW VALUATION
CHAPTER 4 DISCOUNTED CASH FLOW VALUATION Answers to Concepts Review and Critical Thinking Questions 1. Assuming positive cash flows and interest rates, the future value increases and the present value
More informationrate nper pmt pv Interest Number of Payment Present Future Rate Periods Amount Value Value 12.00% 1 0 $100.00 $112.00
In Excel language, if the initial cash flow is an inflow (positive), then the future value must be an outflow (negative). Therefore you must add a negative sign before the FV (and PV) function. The inputs
More informationBEST INTEREST RATE. To convert a nominal rate to an effective rate, press
FINANCIAL COMPUTATIONS George A. Jahn Chairman, Dept. of Mathematics Palm Beach Community College Palm Beach Gardens Location http://www.pbcc.edu/faculty/jahng/ The TI83 Plus and TI84 Plus have a wonderful
More informationCourse FM / Exam 2. Calculator advice
Course FM / Exam 2 Introduction It wasn t very long ago that the square root key was the most advanced function of the only calculator approved by the SOA/CAS for use during an actuarial exam. Now students
More informationChapter 5 & 6 Financial Calculator and Examples
Chapter 5 & 6 Financial Calculator and Examples Konan Chan Financial Management, Spring 2016 Five Factors in TVM Present value: PV Future value: FV Discount rate: r Payment: PMT Number of periods: N Get
More informationCHAPTER 5 HOW TO VALUE STOCKS AND BONDS
CHAPTER 5 HOW TO VALUE STOCKS AND BONDS Answers to Concepts Review and Critical Thinking Questions 1. Bond issuers look at outstanding bonds of similar maturity and risk. The yields on such bonds are used
More informationChapter 3 Present Value
Chapter 3 Present Value MULTIPLE CHOICE 1. Which of the following cannot be calculated? a. Present value of an annuity. b. Future value of an annuity. c. Present value of a perpetuity. d. Future value
More informationThis is Time Value of Money: Multiple Flows, chapter 7 from the book Finance for Managers (index.html) (v. 0.1).
This is Time Value of Money: Multiple Flows, chapter 7 from the book Finance for Managers (index.html) (v. 0.1). This book is licensed under a Creative Commons byncsa 3.0 (http://creativecommons.org/licenses/byncsa/
More informationDiscounted Cash Flow Valuation
Discounted Cash Flow Valuation Chapter 5 Key Concepts and Skills Be able to compute the future value of multiple cash flows Be able to compute the present value of multiple cash flows Be able to compute
More informationTIME VALUE OF MONEY #6: TREASURY BOND. Professor Peter Harris Mathematics by Dr. Sharon Petrushka. Introduction
TIME VALUE OF MONEY #6: TREASURY BOND Professor Peter Harris Mathematics by Dr. Sharon Petrushka Introduction This problem assumes that you have mastered problems 15, which are prerequisites. In this
More informationReview for Exam 1. Instructions: Please read carefully
Review for Exam 1 Instructions: Please read carefully The exam will have 20 multiple choice questions and 4 work problems. Questions in the multiple choice section will be either concept or calculation
More informationPV Tutorial Using Excel
EYK 153 PV Tutorial Using Excel TABLE OF CONTENTS Introduction Exercise 1: Exercise 2: Exercise 3: Exercise 4: Exercise 5: Exercise 6: Exercise 7: Exercise 8: Exercise 9: Exercise 10: Exercise 11: Exercise
More informationCHAPTER 5 INTRODUCTION TO VALUATION: THE TIME VALUE OF MONEY
CHAPTER 5 INTRODUCTION TO VALUATION: THE TIME VALUE OF MONEY Answers to Concepts Review and Critical Thinking Questions 1. The four parts are the present value (PV), the future value (FV), the discount
More informationMathematics. Rosella Castellano. Rome, University of Tor Vergata
and Loans Mathematics Rome, University of Tor Vergata and Loans Future Value for Simple Interest Present Value for Simple Interest You deposit E. 1,000, called the principal or present value, into a savings
More information